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Numerical propagation of the Schrödinger equation is the bottleneck in many quantum optimal control
computations. For a quantum system of N states with an electric-field–dipole interaction, the use of a propa-
gation toolkit introduced in a prior work yields an O�N� reduction in floating-point operations per wave
function propagation. A concatenation scheme for the toolkit method is introduced, and a scaling analysis
shows a significant additional reduction in computational cost. The method exploits the fact that the same
sequences of discretized control field values are often repeated many times in a control simulation. The
concatenated toolkit is benchmarked against the standard toolkit in a numerical simulation.
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I. INTRODUCTION

Quantum optimal control theory �1� has been imple-
mented successfully across a variety of physical models
�2–16�. In such studies, a common bottleneck is the propa-
gation of the wave function �as well as the density matrix or
time evolution operator, depending on the objective� through
the solution of Schrödinger’s equation. A propagation toolkit
technique was proposed as a means of reducing this compu-
tational cost �17�. The toolkit concept is most naturally ap-
plied to quantum systems expressed in terms of a finite set of
basis states, but it has also found utility in spatial wave-
packet propagation �18�. In the present work we introduce a
generalization of the original toolkit method �17� which
yields further savings.

Consider a quantum system of N states whose dynamics
are determined by Schrödinger’s equation

i
�

�t
���t�� = �H0 − ���t�����t�� , �1�

where H0 is the free Hamiltonian, � is the dipole, and ��t� is
the control field. Here we adopt units of �=1. The conven-
tional approach to propagating the wave function entails dis-
cretizing time into L points �t1 , . . . , tL�, taken as equally
spaced by �t for simplicity, and computing the product

���tL�� = 	
s=1

L

exp�− iH�ts��t����t1�� , �2�

where the Hamiltonian H�ts�=H0−���ts� is exponentiated
anew at each time point. In typical optimal control applica-
tions, Schrödinger’s equation is solved repeatedly �com-
monly 
102−104 times� for a sequence of control fields.
This process incurs a recurrent computational cost scaling as
O�LN3� floating-point operations �FLOPs� for each full
propagation to time tL. In special cases the number of FLOPs
may be less, but in general circumstances maintaining the
highest accuracy will exhibit a scaling cubic in N.

An alternative approach �17� of propagation via the tool-
kit entails discretization of the control field amplitudes into a
mesh of 2D+1 values ��r� indexed by r� �−D ,−D
+1, . . . ,0 , . . . ,D−1,D� and ordered �r��r+1. The maximum
�minimum� discretized value of the field is �D ��−D�, along

with �0=0, and the mesh spacing is �r+1−�r=�� for all r;
equal spacing �� is not required, but it is convenient here to
illustrate the basic toolkit concept. For each amplitude �r the
corresponding short-time propagator ��r��exp�−i�H0

−��r��t� is computed and the collection of all 2D+1 propa-
gators ���r�� is stored as the propagation toolkit. Figure 1
shows the result of applying three toolkits with D=10, 20,
and 50 for an electric field bounded by the dynamic range
−1	��t�	1 and defined over a time interval discretized into
L=300 time points �arbitrary units are used and later for all
numerical examples�. As a practical guideline, the param-
eters D and L should be chosen such that the field does not
jump more than two or three spacings of �� per time step �t.
If greater jumps are required, it is likely that either the am-
plitude or the time mesh is not well specified, possibly com-
promising the accuracy of the computation.

The computation of the propagators comprising the tool-
kit introduces a one-time overhead cost scaling as O(�2D
+1�N3). However, each subsequent solution of the
Schrödinger equation

���tL�� = 	
�=1

L

��r�����t1�� �3�

for a new trial field now requires only matrix-vector multi-
plications of toolkit propagators with the initial wave func-
tion incurring a cost scaling as O�LN2�. Here it is understood
that each local propagator ��r�� is some suitable member of
the toolkit ���r�� with r� identified with a particular value of
r. Since generally D�L and many propagations are required
in most practical optimal control calculations, the one-time
cost of computing the toolkit is amply compensated for by
the subsequent O�N� savings accrued during each wave-
function propagation.

The motivation for the foregoing standard toolkit concept
arises from the observation that certain amplitude values of
the electric field are repeated several times during the propa-
gation, which is evident in Fig. 1 by taking a cut at any value
of �r. This observation can be generalized by realizing that
certain sequences of amplitude values are often repeated as
well. This motivates the concept of the concatenated toolkit,
discussed in the next section.
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II. CONCATENATED TOOLKIT

The propagators from the standard toolkit can be concat-
enated in a simple manner to further reduce the computa-
tional cost per propagation. The operations involve �i� pre-
calculating C-length products of the standard toolkit
propagators �which are denoted as codons�, �ii� saving the
codons into memory, and �iii� propagating the wave function
with codons in lieu of the standard toolkit propagators. Be-
yond the overhead of calculating the codons, this concat-
enated toolkit procedure reduces the computational cost per
propagation by a factor of 1

C .
The standard toolkit is composed of a set of 2D+1 propa-

gators ���r��. The concatenated toolkit is composed of all
C-length products of propagators ��r� of the form


�r�C�, . . . ,r�j�, . . . ,r�2�,r�1��

� ��r�C�� ¯ ��r�j�� ¯ ��r�2����r�1�� , �4�

satisfying the condition

�r�j+1� − r�j�� 	 M, C � j � 1 �5�

for each r�j�� �−D ,−D+1, . . . ,0 , . . . ,D−1,D�. The condi-
tion �5� restricts “jumps” in the field value from one time
step to the next to at most M��. For a well-specified ampli-
tude and time mesh, M =3 is usually sufficient.

In Fig. 2, all possible codons originating from a given
field value �k are illustrated for C=3 and M =1. Proceeding
from left to right, all possible paths leading from the node at
time t to the nodes at time t+2�t represent products to be
computed and stored as codons. As an example, the path
indicated by solid lines corresponds to the product 
�k
−1,k−1,k�=��k−1���k−1���k�. By direct counting of all
paths, it is evident that there are �2M +1�C−1 codons originat-
ing from each �k �with the exception of the field values �−D+�

and �D−� where �	CM, for which codons corresponding to
paths leading to field values beyond the dynamic range
��−D ,�D� are disregarded�. Since there are 2D+1 values for
�k in the field amplitude mesh, 2D+1 distinct collections of

codons originating from each �k must be computed and
stored, as illustrated in Fig. 2. The one-time overhead cost of
generating the concatenated toolkit scales as

O„�2D + 1��2M + 1�C−1N3
… , �6�

where it is assumed that the standard toolkit has already been
calculated.

Propagating a wave function with the concatenated toolkit
involves �i� converting the actual field amplitude values to
the discretized values permitted by the amplitude mesh, �ii�
matching sequences of these values to the appropriate
codons stored in memory, and �iii� performing matrix-vector
multiplications of the evolving wave function with the ma-
trices 
��r�C� , . . . ,r�j� , . . . ,r�2� ,r�1�� representing the codons:

���tL�� = 	
�=1

L/C


��r�C�, . . . ,r�j�, . . . ,r�2�,r�1�����t1�� . �7�

Here it is understood that the particular codon sequence
r�C� , . . . ,r�j� , . . . ,r�2� ,r�1�, C� j�1, depends on the index �.
The computational cost of a single wave-function propaga-
tion associated with the concatenated toolkit scales as
O� L

CN2�.

III. COMPARISON OF COMPUTATIONAL COSTS

The construction of the concatenated toolkit introduces an
added overhead computational cost beyond constructing the
standard toolkit. However, application of the concatenated
toolkit can yield a substantial savings in the computational
cost of each solution of the Schrödinger equation. Further-
more, the accuracy of the concatenated toolkit is exactly the
same as that for the standard toolkit, which is close to ordi-
nary propagation assuming that the number 2D+1 of ampli-
tude values is sufficiently large.
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FIG. 1. An electric field bounded over the dynamic range �−D

=−1 and �D=1 with a 300-point time mesh �arbitrary units of am-
plitude and time are used� is discretized with three amplitude
meshes D=10,20,50. Generally, larger D values correspond to
smoother representations of the control field.

FIG. 2. A concatenated toolkit is composed of all C-length prod-
ucts of standard toolkit propagators satisfying the maximum jump
rule in Eq. �5�. In the present case, M =1 and C=3. The �k ampli-
tude value at time t is represented by a node, and all left-to-right
paths leading from that node to the five nodes at time t+2�t sym-
bolize a product of toolkit propagators to be computed and stored as
codons. As an illustration, the path defined by the solid lines is the
codon 
�k−1,k−1,k�=��k−1���k−1���k�.
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To make a direct comparison, 1000 electric fields were
randomly generated over a time interval �0,1� and dis-
cretized over L=300 mesh points. The dynamic range of the
fields was bounded over −1	��t�	1, and discretized with
amplitude mesh parameter D=50 �i.e., 101 mesh points�. The
free Hamiltonians H0 and dipoles � are randomly chosen for
each field, where N=4. The ratios of the CPU time per
propagation used by the concatenated toolkit �c� to that for
the standard toolkit �s� are calculated for each of the 1000
fields for C=2, 3, 4, 5, and 6. The observed savings ratios
� c

s
� shown in Table I, averaged over the 1000 fields, corre-

spond closely with 1
C . In general, increasing C reduces the

computational cost per propagation. However, since the
overhead cost of generating the concatenated toolkit scales
exponentially with C, large values of C are impractical. In
the next section, a guideline for choosing the value of C is
developed based on the simple criterion that the savings in-
troduced by the concatenation should exceed the additional
overhead costs.

IV. SELECTION OF THE CODON LENGTH

Generally, a single quantum control computation seeking
an optimal field requires multiple propagations of the
Schrödinger equation. Letting J denote the number of propa-
gations required in a given computation, the savings intro-
duced by the use of the concatenated toolkit is JLN2−J L

CN2.
An approach to specifying an upper bound on C is to deter-
mine the value at which the total savings from all propaga-
tions in a computation exceeds the computational overhead
given in Eq. �6�, or

JLN2 − J
L

C
N2 � �2D + 1��2M + 1�C−1N3. �8�

Taking logarithms, this simplifies to

ln JL

N�2D + 1�� � �C − 1�ln�2M + 1� − ln1 −
1

C
� . �9�

Noting that −0.69� ln�1− 1
C

��0 for C�2, it follows that

ln� JL
N�2D+1� �

ln�2M + 1�
+ 1 � C . �10�

Equation �10� provides a useful practical upper bound which
can be readily calculated in advance of any application of the

concatenated toolkit with the available parameters J, L, D, N,
and M. The parameter N is fixed by the physical system, and
D, L, and M are fixed by requirements of accuracy, so the
practical factor for determining the upper bound is J. For
example, in the case of N=20, L=1000, D=50, and M =3, a
codon length of up to 3 is justified for J=102, up to 4 for
J=103, and up to 5 for J=104. Practically, it is preferable to
choose a codon length beneath the actual upper bound, as the
exponential increase in overhead for each further increase in
C can be excessively expensive, even if justified by the
bounding analysis.

V. FURTHER APPLICATIONS

Beyond wave-function propagation, there are classes of
quantum control computations which involve the time propa-
gation of a density matrix satisfying the equation i �

�t��t�
= �H�t� ,��t��, where the time evolution is given by ��tL�
=U�tL , t1���t1�U†�tL , t1�. If ��t1� describes a statistical mix-
ture with no nonzero off-diagonal matrix elements, the FLOP
cost of computing ��tL� with the standard toolkit scales as
O�LN2� as only matrix-vector multiplications are required.
The magnitude of the savings here, upon using the concat-
enated instead of the standard toolkit, is 
 1

C . However, if
��t1� describes a coherent ensemble with nonzero off-
diagonal terms, matrix-matrix multiplications are required
and the FLOP cost for the standard toolkit scales as O�LN3�.
In this case the savings ratio is still 1

C over the standard
toolkit, but the significance of the savings is greater in abso-
lute terms. The same savings are obtained for computing the
propagator itself U�tL , t1� as well.

The savings from applying the standard toolkit method
have been verified in practical calculations �19–24�. A code
for a concatenated toolkit requires simple additional logic
steps for computing the codons, and the overhead is gener-
ally small. The concatenated toolkit provides a simple, easily
implementable refinement to the standard application of
toolkit-based propagation for quantum control computations.
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TABLE I. The ratios of the CPU time per propagation with the concatenated toolkit �c� to that with the
standard toolkit �s� computed and averaged over 1000 propagations, for N=4, D=50, and M =3. The

averaged savings ratios � c

s
� correspond closely to the theoretically expected savings ratio 1

C with the small
discrepancy attributable to the per-propagation overhead cost of matching sequences of the discretized field
values to their corresponding codons.

Codon length C 2 3 4 5 6

Observed � c

s
� 0.520 0.349 0.263 0.210 0.174

Theoretical savings ratio 0.500 0.333 0.250 0.200 0.167
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